JOSH NAGLER, MD MHPEd
ECHO SERIES
APRIL 11, 2019
DISCLOSURES

- I am a paid faculty member for The Difficult Airway Course.
- I write on a number of topics related to pediatric airway management for UpToDate.
OBJECTIVES

At the end of this session participants should be able to:

1. Follow a standardized advanced airway management algorithm
2. Utilize a systematic approach during pediatric endotracheal intubation
3. Recognize and address anatomic and physiologic differences between children and adults when managing the airway
The Main Airway Algorithm

- Needs to Be Intubated?
 - Yes
 - Crash Airway?
 - Yes
 - Intubate w/o Medications
 - No
 - Predicted Difficult Airway?
 - Yes*
 - Difficult Airway Decision
 - High Risk or Low Reward
 - O₂/BMV/NIV
 - Other devices
 - Sedation only
 - No
 - RSI
 - Low Risk or High Reward
 - Post-Intubation Management
 - Successful?
 - Yes
 - Failed Airway
 - No*
OBJECTIVES

At the end of this session participants should be able to:

1. Follow a standardized advanced airway management algorithm
2. Utilize a systematic approach during pediatric endotracheal intubation
3. Recognize and address anatomic and physiologic differences between children and adults when managing the airway
WHY DO WE NEED A SYSTEMATIC APPROACH DURING PEDIATRIC INTUBATION?

1. Infrequent event

2. “Pediatric” = lots of things

Intubations per 1000 patients

6-10

1-2
MEMORY, MNEMONICS, FORMULAS, ETC.

- Weights for age
- Endotracheal tube size
- Insertion depth
- Dosing of medication
LESSENING THE COGNITIVE LOAD:
LENGTH-BASED SYSTEMS
LESSENING THE COGNITIVE LOAD: THERE’S AN APP FOR THAT
CHECKLISTS CAN HELP

BCH ED Pre-Intubation Checklist

Attending in charge reads aloud each item:

Providers

- Identify by name each person:
 - Primary laryngoscopist
 - Backup laryngoscopist – positioned to see video screen
 - RN administering meds
 - Other personnel: Respiratory therapy and pharmacist

Airway

- Discuss any airway concerns
 - If difficult airway, call 5-5555 for anesthesia STAT (run!) or ALERT (walk)
 - For critical airway obstruction: call 5-5555 for ORL STAT (includes ANESTH)
 - Consider having LMA available (in trauma pyx)

Patient

- Pre-oxygenate for ≥ 2 -3 mins with 100% FiO2
- Apneic oxygenation suggested - NC (not ETCO₂ cannula) at 1-2L/min/year of age
- Discuss any possible hemodynamic issues
 - Consider NF bolus, starting pressors, placing defibrillator pads
- Discuss preparations for any other special situations?
 - C-spine immobilized - Consider pediatric (2-12 yrs) or adult (>12 yrs) D blade
 - Head injury precautions
 - Distended stomach requiring venting

Equipment

- Ensure that all of the following equipment is present and functioning:
 - Suction - flexible suction catheter and Yankauer
 - Oxygen - NRB, bag and mask
 - Airway equipment
 - 2 laryngoscopes - primary and back up
 - 2 ETTs - appropriate size and 1 smaller (test the cuff)
 - Note and/or mark tube insertion depth (3x tube diameter)
 - Oral airways
 - Benzoin and tape
 - Pharmacology
 - Pretreatment: Atropine (0.02 mg/kg) if < 1 yo or bradycardic
 - RSI Meds – state names and doses of meds
 - Sugammadex 16 mg/kg in room if need for Rocuronium reversal
 - Post-intubation anesthesia
 - Equipment
 - In-line ETCO₂
 - Ventilator
- Push record on VL
OBJECTIVES

At the end of this session participants should be able to:

1. Follow a standardized advanced airway management algorithm
2. Utilize a systematic approach during pediatric endotracheal intubation
3. Recognize and address anatomic and physiologic differences between children and adults when managing the airway
ANATOMIC DIFFERENCES

Relatively Large Occiput
TRAGUS (EXT AUDITORY CANAL) → SHOULDER
HEAD VS. SHOULDER ROLL BASED ON AGE
Historically pediatric airway reported as “funnel shaped”

(Coté CJ, Ryan JF, Todres ID, et al [eds]: A Practice of Anesthesia for Infants and Children, 1992.)
NOT-SO-FUNNEL-SHAPED AIRWAY

- Newer data
 - MRI images
 - Bronchoscopy
 - CT

MRI

3D-CT

Bronchoscopy

(Litman RS et al. Anesthesiology, 2003)

(Wani TM et al. Paediatr Anaesth, 2017)

(Dalal PG et al, Anesth Analg, 2009)
WHY UNCUFFED TUBES?

1. “Funnel” shaped → naturally snug fit
2. Means need smaller tube
3. Concern for tracheal injury
PHYSIOLOGIC DIFFERENCE

Rapid Desaturation

- Higher oxygen consumption
- Lower oxygen reserve

PREDICTABLE DIFFERENCES IN PEDIATRIC AIRWAYS AND HOW TO ADDRESS THEM

<table>
<thead>
<tr>
<th>Anatomic/Physiologic Challenge</th>
<th>How Best to Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large occiput</td>
<td>Position patient (line up the tragus)</td>
</tr>
<tr>
<td>Airway shape (not funneled)</td>
<td>Consider cuffed endotracheal tubes</td>
</tr>
<tr>
<td>Rapid desaturation</td>
<td>Pre-oxygenation Apneic oxygenation</td>
</tr>
</tbody>
</table>
QUESTIONS, THOUGHTS, IDEAS?